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A quick point before we begin - I try to write the technical article of each issue of LP360 News in such a 

way that it provides valuable information even if you are not a current user of LP360. With this aim in 

mind, much of the background material is presented in a software-independent way. Of course, we 

think LP360 is the best desktop LIDAR tool on the planet and will point out how our algorithms are 

implemented, but the overall information should prove valuable to all. 

As we have discussed in the last two issues of LP360 News, breaklines are two- or three-dimensional 

graphic data (points, lines, polygons) that we introduce into an elevation model to alter the topology. 

When working with Geographical Information System (GIS) models, we nearly always model complex, 

irregular elevation data as a Triangulated Irregular Network (TIN). The source of the elevation points 

need not be from a LIDAR sensor. Surveyed mass points, scanned contour lines, correlated stereo 

models, and myriad other sources produce irregular elevation data that can be modeled as a TIN, and 

tools (such as LP360) that can manipulate random points are generally adept at processing these various 

data sources. Figure 1 is a point rendering of a typical airborne LIDAR scene that has been processed via 

automatic classification in LP360 (but not edited). Note that due to the high point density in this 

particular data set, features are recognizable even though the point cloud provides a fairly crude 

rendering. 
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Figure 1: Points from a LIDAR Scene (data courtesy Southwest Florida Water Management District) 

Recall from our previous discussions that a TIN is a convenient way to model point data because we can 

construct a solid surface (by filling in the triangle faces or facets) and include every point. No other 

geometry provides us this important capability. Note that we can even model “wrap-around” surfaces, 

such as the faces of tunnels with a TIN, so long as the TIN is a true 3D construct. Figure 2 is the same 

scene as Figure 1 but now rendered as a TIN. As you can see, the TIN generally provides a much richer 

viewing context. 
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Figure 2: A TIN visualization 

As previously discussed, breaklines allow us to modify the rendering of a TIN (as well as the extraction of 

‘derived’ products from the elevation model). We discussed the idea of a 2-dimensional (2D) breakline in 

the first part of this series (April LP360 News). Recall that a 2D breakline, while potentially altering the 

node placements in a TIN, does not modify the elevation of the TIN. These 2D breaklines can be 

collected using a wide variety of methods from field surveys to heads-up digitizing from a digital 

orthophoto. 

A three-dimensional (3D) breakline modifies the elevation of a TIN by introducing auxiliary “Z” points in 

a constrained manner. Before we dive into the details of what exactly is meant by this last sentence, 
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let’s consider how we obtain these 3D vectors. I will refer to graphical objects that are represented by 

nodes and lines as vectors, even though this is not technically the definition of a vector! This is a hold-

over from differentiating computer displays based on raster or vector drawing techniques. 

In order to enforce 3D constraints in an elevation model, we need 3D vectors. One of the huge 

advantages of LIDAR data is its very high vertical accuracy (15 cm or better vertical absolute accuracy is 

now commonplace in wide-area aerial mapping). Therefore, we can often use the LIDAR data 

themselves to enforce elevation models derived from the LIDAR data (this circular idea is the subject for 

another LP360 News session). A very common scenario is to digitize the planimetric (X, Y) portions of the 

vectors from a digital orthophoto and attribute the Z value from LIDAR. This process of creating a 

composite feature from multiple sources is termed “conflation.” LP360 (both the ArcMap and Windows 

versions) contains a rich set of tools for conflating Z values onto 2-dimensional vectors and for 

densifying existing 3D geometries. For example, Figure 3 illustrates dynamic conflation using ortho 

photos for the planimetric capture and LIDAR for the Z component. Note that I am digitizing a lake 

feature in the Map View of LP360 while simultaneously viewing the vertical dimension in the LP360 

Profile window. Not only does this allow me to much more accurately trace the shore line (by keeping 

the vertical white line in the profile view aligned with the shore) but the Z (vertical) component of my 3D 

shore line vector is being automatically populated from the LIDAR data via the Conflation process. This 

process is a very practical form of data fusion.  

 

Figure 3: Dynamic Conflation using a high resolution ortho and high resolution LIDAR 
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By now a natural question should occur; how exactly are the Z values being computed from the LIDAR 

data? There are quite a few algorithms for doing this. LP360 supports a fairly robust set for dealing with 

common situations. As time goes forward, we will be adding more to the library.  

Pure Drape – This is a common technique that is used when you want a 3D line to exactly follow the 

surface of a TIN. The line work is “draped” over the TIN and vertices are directly computed from the line, 

TIN intersection. LP360 supports a variety of population schemes - including keeping the original vector 

vertex spacing, inserting new vertices at a user-defined interval, or inserting vertices where the vector 

crosses TIN edges. 

Downstream Constraint – This is a drape method that ensures that the vector monotonically decreases 

(or increases, depending on digitizing direction) from vertex to vertex. Thus, it is enforcing a “correct” 

water flow. Obviously this requires excursions above and below the TIN surface. LP360 allows you to 

control the maximum excursions so as not to exceed a surface error tolerance. Figure 4 provides an 

example of a downstream constraint. The ground points are depicted in yellow. The constrained vector 

created by LP360 is blue. Notice in the area circled in red that the constrained vector had to be moved 

below the LIDAR surface to enforce the monotonically decreasing rule. LP360 has triggers that will alert 

you if the deviation from the LIDAR surface exceeds a specified error tolerance.  

 

Figure 4: Downstream Constraint (ground is yellow, constrained vector is blue) 

Constant Z – This mode computes a value for elevation and then applies this value to all of the vertices 

of the vector. Since a constant is being used, this value can also be stored in the attribute table 

associated with the vector. A constant Z algorithm is typically used for water body “flattening.” 

During the computation process, a number of different methods of computing the Z value for each 

vertex are supported. The method selected depends on the type of breakline you are creating (we will 

address this in a later edition) as well as the quality of the LIDAR data being used. We support a wide 

variety of options that comprise various combinations of: 

Highest, Lowest Z – This method looks in a radial direction a user-specified distance from the vertex and 

locates the highest or lowest elevation. An example might be digitizing a ridge line in an area of grass. 

Since many LIDAR pulses will reflect from grass, a “lowest” Z algorithm might be appropriate. 

Average Z – This method is similar to the previous method, except that all of the points within the user-

specified radius are averaged and this average Z is used. This can be useful for LIDAR over hard surfaces 

where your desire is to either average out noise or average out local slope. 
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Closest Z – This selects the point closest to the vertex. 

Surface Z – This method simply interpolates the Z from the TIN facet. 

In addition to the above methods of computing Z, we also support a retaining wall method. This special 

method constructs, from a single input line, a set of two parallel lines a user-specified distance apart. 

These lines then have Z attributed based on both a high and low Z algorithm. The result is a line that 

represents the base of the wall and a second line that represents the top of the wall. 

As you can imagine, there are all sorts of options with each of the above methods that allow you to 

tailor to many different situations. 

Some of the more common breakline collection scenarios for which LP360 is used include: 

 Water Body Flattening 

 Hydro-correct streams (down-stream constraints) 

 Double line drain (River flattening – a scheme whereby the river flows downstream but opposite 

banks are at the same elevation) 

In this article I have focused on how a breakline is computed and also discussed some of the methods 

incorporated in LP360 for conflating elevation values. In the next edition, I will explore how these 

methods are applied in actual 3D breakline enforcement scenarios. 

 


